

marisa-trie [image: pyversions] [https://pypi.python.org/pypi/marisa-trie] [image: travis] [https://travis-ci.org/pytries/marisa-trie] [image: appveyor] [https://ci.appveyor.com/project/superbobry/marisa-trie-75wx1]

Static memory-efficient Trie-like structures for Python (2.7 and 3.4+)
based on marisa-trie [https://github.com/s-yata/marisa-trie] C++ library.

String data in a MARISA-trie may take up to 50x-100x less memory than
in a standard Python dict; the raw lookup speed is comparable; trie also
provides fast advanced methods like prefix search.

Note

There are official SWIG-based Python bindings included
in C++ library distribution; this package provides alternative
Cython-based pip-installable Python bindings.

Installation

pip install marisa-trie

Usage

See Tutorial and API for details.

Current limitations

	The library is not tested with mingw32 compiler;

	.prefixes() method of BytesTrie and RecordTrie is quite slow
and doesn’t have iterator counterpart;

	read() and write() methods don’t work with file-like objects
(they work only with real files; pickling works fine for file-like objects);

	there are keys() and items() methods but no values() method.

License

Wrapper code is licensed under MIT License.

Bundled marisa-trie [https://github.com/s-yata/marisa-trie] C++ library is dual-licensed under
LGPL and BSD 2-clause license.

Tutorial

Tries

There are several trie classes in this package:

	marisa_trie.BinaryTrie

	

	marisa_trie.Trie

	

	marisa_trie.RecordTrie

	

	marisa_trie.BytesTrie

	

marisa_trie.Trie

Create a new trie from a list of keys:

>>> import marisa_trie
>>> trie = marisa_trie.Trie([u'key1', u'key2', u'key12'])

Check if a key is present:

>>> u'key1' in trie
True
>>> u'key20' in trie
False

Each key is assigned an unique ID from 0 to (n - 1), where n is the
number of keys in a trie:

>>> trie[u'key2']
1

Note that you can’t assign a value to a marisa_trie.Trie key,
but can use the returned ID to store values in a separate data structure
(e.g. in a Python list or NumPy array).

An ID can be mapped back to the corresponding key:

>>> trie.restore_key(1)
u'key2'

Query a trie

	Find all trie keys which are prefixes of a given key:

>>> trie.prefixes(u'key12')
[u'key1', u'key12']

	Find all trie keys which start with a given prefix:

>> trie.keys(u'key1')
[u'key1', u'key12']

	The latter is complemented by items() which
returns all matching (key, ID) pairs.

All query methods have generator-based versions prefixed with iter.

Note

If you’re looking for a trie with bytes keys, check out
BinaryTrie.

marisa_trie.RecordTrie

Create a new trie from a list of (key, data) pairs:

>>> keys = [u'foo', u'bar', u'foobar', u'foo']
>>> values = [(1, 2), (2, 1), (3, 3), (2, 1)]
>>> fmt = "<HH" # two short integers.
>>> trie = marisa_trie.RecordTrie(fmt, zip(keys, values))

Each data tuple would be converted to bytes using struct.pack() [https://docs.python.org/3/library/struct.html#struct.pack]. Take a
look at available format strings
here [http://docs.python.org/library/struct.html#format-strings].

Check if a key is present:

>>> u'foo' in trie
True
>>> u'spam' in trie
False

marisa_trie.RecordTrie allows duplicate keys. Therefore __getitem__ and
get return a list of values.

>>> trie[u'bar']
[(2, 1)]
>>> trie[u'foo']
[(1, 2), (2, 1)]
>>> trie.get(u'bar', 123)
[(2, 1)]
>>> trie.get(u'BAAR', 123) # default value.
123

Similarly, keys() and
items() take into account key multiplicities:

>> trie.keys(u'fo')
[u'foo', u'foo', u'foobar']
>> trie.items(u'fo')
[(u'foo', (1, 2)), (u'foo', (2, 1), (u'foobar', (3, 3))]

marisa_trie.BytesTrie

BytesTrie is similar to RecordTrie, but the values are raw bytes,
not tuples:

>>> keys = [u'foo', u'bar', u'foobar', u'foo']
>>> values = [b'foo-value', b'bar-value', b'foobar-value', b'foo-value2']
>>> trie = marisa_trie.BytesTrie(zip(keys, values))
>>> trie[u'bar']
[b'bar-value']

Persistence

Trie objects supports saving/loading, pickling/unpickling and memory mapped I/O.

Save trie to a file:

>>> trie.save('my_trie.marisa')

Load trie from a file:

>>> trie2 = marisa_trie.Trie()
>>> trie2.load('my_trie.marisa')

Note

You may also build a trie using marisa-build command-line
utility (provided by underlying C++ library; it should be
downloaded and compiled separately) and then load the trie
from the resulting file using load.

Trie objects are picklable:

>>> import pickle
>>> data = pickle.dumps(trie)
>>> trie3 = pickle.loads(data)

Memory mapped I/O

It is possible to use memory mapped file as data source:

>>> trie = marisa_trie.RecordTrie(fmt).mmap('my_record_trie.marisa')

This way the whole dictionary won’t be loaded fully to memory; memory
mapped I/O is an easy way to share dictionary data among processes.

Warning

Memory mapped trie might cause lots of random disk accesses which
considerably increases the search time.

Storage options

marisa-trie [https://github.com/s-yata/marisa-trie] C++ library provides
some configuration options for trie storage; See “Enumeration Constants”
section in the library
docs [http://s-yata.github.io/marisa-trie/docs/readme.en.html].

These options are exposed as order, num_tries, cache_size
and binary keyword arguments for trie constructors.

For example, set order to marisa_trie.LABEL_ORDER in order to
make trie functions return results in alphabetical oder:

>>> trie = marisa_trie.RecordTrie(fmt, data, order=marisa_trie.LABEL_ORDER)

Note that two tries constructed from identical data but with different order
arguments will compare unequal:

>>> t1 = marisa_trie.Trie(order=marisa_trie.LABEL_ORDER)
>>> t2 = marisa_trie.Trie(order=marisa_trie.WEIGHT_ORDER)
>>> t1 == t2
False

Benchmarks

My quick tests show that memory usage is quite decent.
For a list of 3000000 (3 million) Russian words memory consumption
with different data structures (under Python 2.7):

	dict(unicode words -> word lenghts): about 600M

	list(unicode words) : about 300M

	BaseTrie from datrie [https://github.com/kmike/datrie] library: about 70M

	marisa_trie.RecordTrie : 11M

	marisa_trie.Trie: 7M

Note

Lengths of words were stored as values in datrie.BaseTrie
and marisa_trie.RecordTrie. RecordTrie compresses
similar values and the key compression is better so it uses
much less memory than datrie.BaseTrie.

marisa_trie.Trie provides auto-assigned IDs. It is not possible
to store arbitrary values in marisa_trie.Trie so it uses less
memory than RecordTrie.

Benchmark results (100k unicode words, integer values (lenghts of the words),
Python 3.2, macbook air i5 1.8 Ghz):

dict building 2.919M words/sec
Trie building 0.394M words/sec
BytesTrie building 0.355M words/sec
RecordTrie building 0.354M words/sec

dict __getitem__ (hits) 8.239M ops/sec
Trie __getitem__ (hits) not supported
BytesTrie __getitem__ (hits) 0.498M ops/sec
RecordTrie __getitem__ (hits) 0.404M ops/sec

dict get() (hits) 4.410M ops/sec
Trie get() (hits) not supported
BytesTrie get() (hits) 0.458M ops/sec
RecordTrie get() (hits) 0.364M ops/sec
dict get() (misses) 4.869M ops/sec
Trie get() (misses) not supported
BytesTrie get() (misses) 0.849M ops/sec
RecordTrie get() (misses) 0.816M ops/sec

dict __contains__ (hits) 8.053M ops/sec
Trie __contains__ (hits) 1.018M ops/sec
BytesTrie __contains__ (hits) 0.605M ops/sec
RecordTrie __contains__ (hits) 0.618M ops/sec
dict __contains__ (misses) 6.489M ops/sec
Trie __contains__ (misses) 2.047M ops/sec
BytesTrie __contains__ (misses) 1.079M ops/sec
RecordTrie __contains__ (misses) 1.123M ops/sec

dict items() 57.248 ops/sec
Trie items() not supported
BytesTrie items() 11.691 ops/sec
RecordTrie items() 8.369 ops/sec

dict keys() 217.920 ops/sec
Trie keys() 19.589 ops/sec
BytesTrie keys() 14.849 ops/sec
RecordTrie keys() 15.369 ops/sec

Trie.prefixes (hits) 0.594M ops/sec
Trie.prefixes (mixed) 1.874M ops/sec
Trie.prefixes (misses) 1.447M ops/sec
RecordTrie.prefixes (hits) 0.103M ops/sec
RecordTrie.prefixes (mixed) 0.458M ops/sec
RecordTrie.prefixes (misses) 0.164M ops/sec
Trie.iter_prefixes (hits) 0.588M ops/sec
Trie.iter_prefixes (mixed) 1.470M ops/sec
Trie.iter_prefixes (misses) 1.170M ops/sec

Trie.keys(prefix="xxx"), avg_len(res)==415 5.044K ops/sec
Trie.keys(prefix="xxxxx"), avg_len(res)==17 89.363K ops/sec
Trie.keys(prefix="xxxxxxxx"), avg_len(res)==3 258.732K ops/sec
Trie.keys(prefix="xxxxx..xx"), avg_len(res)==1.4 293.199K ops/sec
Trie.keys(prefix="xxx"), NON_EXISTING 1169.524K ops/sec

RecordTrie.keys(prefix="xxx"), avg_len(res)==415 3.836K ops/sec
RecordTrie.keys(prefix="xxxxx"), avg_len(res)==17 73.591K ops/sec
RecordTrie.keys(prefix="xxxxxxxx"), avg_len(res)==3 229.515K ops/sec
RecordTrie.keys(prefix="xxxxx..xx"), avg_len(res)==1.4 269.228K ops/sec
RecordTrie.keys(prefix="xxx"), NON_EXISTING 1071.433K ops/sec

Tries from marisa_trie are static and uses less memory, tries from
datrie [https://github.com/kmike/datrie] are faster and can be updated.

You may also give DAWG [https://github.com/kmike/DAWG] a try - it is usually faster than
marisa-trie and sometimes can use less memory (depending on data).

Please take this benchmark results with a grain of salt; this
is a very simple benchmark on a single data set.

API reference

BinaryTrie

Trie

BytesTrie

RecordTrie

Contributing

Contributions are welcome! Development happens at
GitHub [https://github.com/pytries/marisa-trie]. Feel free to submit
ideas, bug reports and pull requests.

If you found a bug in a C++ part please report it to the original
bug tracker [https://github.com/s-yata/marisa-trie/issues].

Navigating the source code

There are 4 folders in repository:

	bench – benchmarks & benchmark data;

	lib – original unmodified marisa-trie [https://github.com/s-yata/marisa-trie] C++ library which is a git
submodule; if something is have to be fixed in this library
consider fixing it in the original repo;

	src – wrapper code; src/marisa_trie.pyx is a wrapper implementation;
src/*.pxd files are Cython headers for corresponding C++ headers;
src/*.cpp files are the pre-built extension code and shouldn’t be
modified directly (they should be updated via update_cpp.sh script).

	tests – the test suite.

Running tests and benchmarks

Make sure tox [http://tox.testrun.org] is installed and run

$ tox

from the source checkout. Tests should pass under Python 2.7,
3.4 and 3.5.

In order to run benchmarks, type

$ tox -c bench.ini

CHANGES

0.7.5 (2018-04-10)

	Removed redundant DeprecationWarning messages in Trie.save and
Trie.load.

	Dropped support for Python 2.6.

	Rebuild Cython wrapper with Cython 0.28.1.

0.7.4 (2017-03-27)

	Fixed packaging issue, MANIFEST.in was not updated after libmarisa-trie
became a submodule.

0.7.3 (2017-02-14)

	Added BinaryTrie for storing arbitrary sequences of bytes, e.g. IP
addresses (thanks Tomasz Melcer);

	Deprecated Trie.has_keys_with_prefix which can be trivially implemented in
terms of Trie.iterkeys;

	Deprecated Trie.read and Trie.write which onlywork for “real” files
and duplicate the functionality of load and save. See issue #31 on
GitHub;

	Updated libmarisa-trie to the latest version. Yay, 64-bit Windows support.

	Rebuilt Cython wrapper with Cython 0.25.2.

0.7.2 (2015-04-21)

	packaging issue is fixed.

0.7.1 (2015-04-21)

	setup.py is switched to setuptools;

	a tiny speedup;

	wrapper is rebuilt with Cython 0.22.

0.7 (2014-12-15)

	trie1 == trie2 and trie1 != trie2 now work (thanks Sergei Lebedev);

	for key in trie: is fixed (thanks Sergei Lebedev);

	wrapper is rebuilt with Cython 0.21.1 (thanks Sergei Lebedev);

	https://bitbucket.org/kmike/marisa-trie repo is no longer supported.

0.6 (2014-02-22)

	New Trie methods: __getitem__, get, items, iteritems.
trie[u'key'] is now the same as trie.key_id(u'key').

	small optimization for BytesTrie.get.

	wrapper is rebuilt with Cython 0.20.1.

0.5.3 (2014-02-08)

	small Trie.restore_key optimization (it should work 5-15% faster)

0.5.2 (2014-02-08)

	fix Trie.restore_key method - it was reading past declared string length;

	rebuild wrapper with Cython 0.20.

0.5.1 (2013-10-03)

	has_keys_with_prefix(prefix) method (thanks
Matt Hickford [https://github.com/matt-hickford])

0.5 (2013-05-07)

	BytesTrie.iterkeys, BytesTrie.iteritems,
RecordTrie.iterkeys and RecordTrie.iteritems methods;

	wrapper is rebuilt with Cython 0.19;

	value_separator parameter for BytesTrie and RecordTrie.

0.4 (2013-02-28)

	improved trie building: weights optional parameter;

	improved trie building: unnecessary input sorting is removed;

	wrapper is rebuilt with Cython 0.18;

	bundled marisa-trie C++ library is updated to svn r133.

0.3.8 (2013-01-03)

	Rebuild wrapper with Cython pre-0.18;

	update benchmarks.

0.3.7 (2012-09-21)

	Update bundled marisa-trie C++ library (this may fix more mingw issues);

	Python 3.3 support is back.

0.3.6 (2012-09-05)

	much faster (3x-7x) .items() and .keys() methods for all tries;
faster (up to 3x) .prefixes() method for Trie.

0.3.5 (2012-08-30)

	Pickling of RecordTrie is fixed (thanks lazarou for the report);

	error messages should become more useful.

0.3.4 (2012-08-29)

	Issues with mingw32 should be resolved (thanks Susumu Yata).

0.3.3 (2012-08-27)

	.get(key, default=None) method for BytesTrie and RecordTrie;

	small README improvements.

0.3.2 (2012-08-26)

	Small code cleanup;

	load, read and mmap methods returns ‘self’;

	I can’t run tests (via tox) under Python 3.3 so it is
removed from supported versions for now.

0.3.1 (2012-08-23)

	.prefixes() support for RecordTrie and BytesTrie.

0.3 (2012-08-23)

	RecordTrie and BytesTrie are introduced;

	IntTrie class is removed (probably temporary?);

	dumps/loads methods are renamed to tobytes/frombytes;

	benchmark & tests improvements;

	support for MARISA-trie config options is added.

0.2 (2012-08-19)

	Pickling/unpickling support;

	dumps/loads methods;

	python 3.3 workaround;

	improved tests;

	benchmarks.

0.1 (2012-08-17)

Initial release.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 marisa-trie

_static/up.png

_static/up-pressed.png

